Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
About

About

I'm Antonio Valente and I was graduated in Electrical Engineering from University of Trás-os-Montes and Alto Douro (UTAD), Portugal in 1994, and in 1999 I've taked a MsC degree in Industrial Electronics from University of Minho, Portugal. I've obtained in 2003 a PhD degree at UTAD, working in the field of micro-systems for agriculture. Presently, I'm an Associate Professor with Habilitation in the Department of Engineering, UTAD, and director of the same department. I'm a senior researcher at Institute for Systems and Computer Engineering - Technology and Science (INESC TEC). I was chairman of ICARSC 2015 and local organizer of Robótica 2015, Vila Real, Portugal. I'm also the organizer of Portuguese Micromouse Contest (robotics competition organized annually). My professional interests are in sensors, MEMS sensors, microcontrollers, and embedded systems, with application focus to agriculture.

Interest
Topics
Details

Details

  • Name

    António Valente
  • Role

    Senior Researcher
  • Since

    01st June 2012
004
Publications

2025

Implementation of an Internet of Things Architecture to Monitor Indoor Air Quality: A Case Study During Sleep Periods

Authors
Mota, A; Serôdio, C; Briga-Sá, A; Valente, A;

Publication
SENSORS

Abstract
Most human time is spent indoors, and due to the pandemic, monitoring indoor air quality (IAQ) has become more crucial. In this study, an IoT (Internet of Things) architecture is implemented to monitor IAQ parameters, including CO2 and particulate matter (PM). An ESP32-C6-based device is developed to measure sensor data and send them, using the MQTT protocol, to a remote InfluxDBv2 database instance, where the data are stored and visualized. The Python 3.11 scripting programming language is used to automate Flux queries to the database, allowing a more in-depth data interpretation. The implemented system allows to analyze two measured scenarios during sleep: one with the door slightly open and one with the door closed. Results indicate that sleeping with the door slightly open causes CO2 levels to ascend slowly and maintain lower concentrations compared to sleeping with the door closed, where CO2 levels ascend faster and the maximum recommended values are exceeded. This demonstrates the benefits of ventilation in maintaining IAQ. The developed system can be used for sensing in different environments, such as schools or offices, so an IAQ assessment can be made. Based on the generated data, predictive models can be designed to support decisions on intelligent natural ventilation systems, achieving an optimized, efficient, and ubiquitous solution to moderate the IAQ.

2025

Systematic review of predictive maintenance practices in the manufacturing sector

Authors
Benhanifia, A; Ben Cheikh, Z; Oliveira, PM; Valente, A; Lima, J;

Publication
INTELLIGENT SYSTEMS WITH APPLICATIONS

Abstract
Predictive maintenance (PDM) is emerging as a strong transformative tool within Industry 4.0, enabling significant improvements in the sustainability and efficiency of manufacturing processes. This in-depth literature review, which follows the PRISMA 2020 framework, examines how PDM is being implemented in several areas of the manufacturing industry, focusing on how it is taking advantage of technological advances such as artificial intelligence (AI) and the Internet of Things (IoT). The presented in-depth evaluation of the technological principles, implementation methods, economic consequences, and operational improvements based on academic and industrial sources and new innovations is performed. According to the studies, integrating CDM can significantly increase machine uptime and reliability while reducing maintenance costs. In addition, the transition to PDM systems that use real-time data to predict faults and plan maintenance more accurately holds out promising prospects. However, there are still gaps in the overall methodologies for measuring the return on investment of PDM implementations, suggesting an essential research direction.

2025

High-resolution portable bluetooth module for ECG and EMG acquisition

Authors
Luiz, E; Soares, S; Valente, A; Barroso, J; Leitão, P; Teixeira, P;

Publication
Computational and Structural Biotechnology Journal

Abstract
Problem: Portable ECG/sEMG acquisition systems for telemedicine often lack application flexibility (e.g., limited configurability, signal validation) and efficient wireless data handling. Methodology: A modular biosignal acquisition system with up to 8 channels, 24-bit resolution and configurable sampling (1–4 kHz) is proposed, featuring per-channel gain/source adjustments, internal MUX-based reference drive, and visual electrode integrity monitoring; Bluetooth® transmits data via a bit-wise packet structure (83.92% smaller than JSON, 7.28 times faster decoding with linear complexity based on input size). Results: maximum 6.7 µVrms input-referred noise; harmonic signal correlations >99.99%, worst-case THD of -53.03 dBc, and pulse wave correlation >99.68% in frequency-domain with maximum NMSE% of 6e-6%; and 22.3-hour operation (3.3 Ah battery @ 150 mA). Conclusion: The system enables high-fidelity, power-efficient acquisition with validated signal integrity and adaptable multi-channel acquisition, addressing gaps in portable biosensing. © 2025 The Authors

2024

Automated Detection of Refilling Stations in Industry Using Unsupervised Learning

Authors
Ribeiro, J; Pinheiro, R; Soares, S; Valente, A; Amorim, V; Filipe, V;

Publication
FLEXIBLE AUTOMATION AND INTELLIGENT MANUFACTURING: ESTABLISHING BRIDGES FOR MORE SUSTAINABLE MANUFACTURING SYSTEMS, FAIM 2023, VOL 2

Abstract
The manual monitoring of refilling stations in industrial environments can lead to inefficiencies and errors, which can impact the overall performance of the production line. In this paper, we present an unsupervised detection pipeline for identifying refilling stations in industrial environments. The proposed pipeline uses a combination of image processing, pattern recognition, and deep learning techniques to detect refilling stations in visual data. We evaluate our method on a set of industrial images, and the findings demonstrate that the pipeline is reliable at detecting refilling stations. Furthermore, the proposed pipeline can automate the monitoring of refilling stations, eliminating the need for manual monitoring and thus improving industrial operations' efficiency and responsiveness. This method is a versatile solution that can be applied to different industrial contexts without the need for labeled data or prior knowledge about the location of refilling stations.

2024

Fusion of Time-of-Flight Based Sensors with Monocular Cameras for a Robotic Person Follower

Authors
Sarmento, J; dos Santos, FN; Aguiar, AS; Filipe, V; Valente, A;

Publication
JOURNAL OF INTELLIGENT & ROBOTIC SYSTEMS

Abstract
Human-robot collaboration (HRC) is becoming increasingly important in advanced production systems, such as those used in industries and agriculture. This type of collaboration can contribute to productivity increase by reducing physical strain on humans, which can lead to reduced injuries and improved morale. One crucial aspect of HRC is the ability of the robot to follow a specific human operator safely. To address this challenge, a novel methodology is proposed that employs monocular vision and ultra-wideband (UWB) transceivers to determine the relative position of a human target with respect to the robot. UWB transceivers are capable of tracking humans with UWB transceivers but exhibit a significant angular error. To reduce this error, monocular cameras with Deep Learning object detection are used to detect humans. The reduction in angular error is achieved through sensor fusion, combining the outputs of both sensors using a histogram-based filter. This filter projects and intersects the measurements from both sources onto a 2D grid. By combining UWB and monocular vision, a remarkable 66.67% reduction in angular error compared to UWB localization alone is achieved. This approach demonstrates an average processing time of 0.0183s and an average localization error of 0.14 meters when tracking a person walking at an average speed of 0.21 m/s. This novel algorithm holds promise for enabling efficient and safe human-robot collaboration, providing a valuable contribution to the field of robotics.

Supervised
thesis

2023

Sistema autónomo para reaproveitamento de águas quentes do banho

Author
Luís Miguel Sampaio Sanches Ferreira

Institution
UTAD

2022

Development of modules with wi-fi connectivity to be implemented in a centralized wireless home automation control system

Author
Afonso Magalhães Mota

Institution
UTAD

2022

Desenvolvimento de uma plataforma para o ensino de robótica móvel

Author
João Bastos Pintor

Institution
UTAD

2022

Advanced 2 5D Path planning for agricultural robots

Author
Luís Carlos Feliz dos Santos

Institution
UTAD

2021

Advanced 2.5D Path Planning for agricultural robots

Author
Luís Carlos Feliz Santos

Institution
UTAD

OSZAR »