Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
About

About

Areas of research:

- Knowledge discovery

  • Supervised learning   
  • Multiple predictive models
  • Applied knowledge discovery

- Intelligent transportation systems

  • Planning and operations of public transports

Interest
Topics
Details

Details

  • Name

    João Mendes Moreira
  • Role

    Senior Researcher
  • Since

    01st January 2011
007
Publications

2025

KDBI special issue: Explainability feature selection framework application for LSTM multivariate time-series forecast self optimization

Authors
Rodrigues, EM; Baghoussi, Y; Mendes Moreira, J;

Publication
EXPERT SYSTEMS

Abstract
Deep learning models are widely used in multivariate time series forecasting, yet, they have high computational costs. One way to reduce this cost is by reducing data dimensionality, which involves removing unimportant or low importance information with the proper method. This work presents a study on an explainability feature selection framework composed of four methods (IMV-LSTM Tensor, LIME-LSTM, Average SHAP-LSTM, and Instance SHAP-LSTM) aimed at using the LSTM black-box model complexity to its favour, with the end goal of improving the error metrics and reducing the computational cost on a forecast task. To test the framework, three datasets with a total of 101 multivariate time series were used, with the explainability methods outperforming the baseline methods in most of the data, be it in error metrics or computation time for the LSTM model training.

2025

Online boxplot derived outlier detection

Authors
Mazarei, A; Sousa, R; Mendes Moreira, J; Molchanov, S; Ferreira, HM;

Publication
INTERNATIONAL JOURNAL OF DATA SCIENCE AND ANALYTICS

Abstract
Outlier detection is a widely used technique for identifying anomalous or exceptional events across various contexts. It has proven to be valuable in applications like fault detection, fraud detection, and real-time monitoring systems. Detecting outliers in real time is crucial in several industries, such as financial fraud detection and quality control in manufacturing processes. In the context of big data, the amount of data generated is enormous, and traditional batch mode methods are not practical since the entire dataset is not available. The limited computational resources further compound this issue. Boxplot is a widely used batch mode algorithm for outlier detection that involves several derivations. However, the lack of an incremental closed form for statistical calculations during boxplot construction poses considerable challenges for its application within the realm of big data. We propose an incremental/online version of the boxplot algorithm to address these challenges. Our proposed algorithm is based on an approximation approach that involves numerical integration of the histogram and calculation of the cumulative distribution function. This approach is independent of the dataset's distribution, making it effective for all types of distributions, whether skewed or not. To assess the efficacy of the proposed algorithm, we conducted tests using simulated datasets featuring varying degrees of skewness. Additionally, we applied the algorithm to a real-world dataset concerning software fault detection, which posed a considerable challenge. The experimental results underscored the robust performance of our proposed algorithm, highlighting its efficacy comparable to batch mode methods that access the entire dataset. Our online boxplot method, leveraging dataset distribution to define whiskers, consistently achieved exceptional outlier detection results. Notably, our algorithm demonstrated computational efficiency, maintaining constant memory usage with minimal hyperparameter tuning.

2025

Sampling approaches to reduce very frequent seasonal time series

Authors
Baldo, A; Ferreira, PJS; Mendes Moreira, J;

Publication
EXPERT SYSTEMS

Abstract
With technological advancements, much data is being captured by sensors, smartphones, wearable devices, and so forth. These vast datasets are stored in data centres and utilized to forge data-driven models for the condition monitoring of infrastructures and systems through future data mining tasks. However, these datasets often surpass the processing capabilities of traditional information systems and methodologies due to their significant size. Additionally, not all samples within these datasets contribute valuable information during the model training phase, leading to inefficiencies. The processing and training of Machine Learning algorithms become time-consuming, and storing all the data demands excessive space, contributing to the Big Data challenge. In this paper, we propose two novel techniques to reduce large time-series datasets into more compact versions without undermining the predictive performance of the resulting models. These methods also aim to decrease the time required for training the models and the storage space needed for the condensed datasets. We evaluated our techniques on five public datasets, employing three Machine Learning algorithms: Holt-Winters, SARIMA, and LSTM. The outcomes indicate that for most of the datasets examined, our techniques maintain, and in several instances enhance, the forecasting accuracy of the models. Moreover, we significantly reduced the time required to train the Machine Learning algorithms employed.

2025

Spatio-Temporal Predictive Modeling Techniques for Different Domains: a Survey

Authors
Kumar, R; Bhanu, M; Mendes-moreira, J; Chandra, J;

Publication
ACM COMPUTING SURVEYS

Abstract
Spatio-temporal prediction tasks play a crucial role in facilitating informed decision-making through anticipatory insights. By accurately predicting future outcomes, the ability to strategize, preemptively address risks, and minimize their potential impact is enhanced. The precision in forecasting spatial and temporal patterns holds significant potential for optimizing resource allocation, land utilization, and infrastructure development. While existing review and survey papers predominantly focus on specific forecasting domains such as intelligent transportation, urban planning, pandemics, disease prediction, climate and weather forecasting, environmental data prediction, and agricultural yield projection, limited attention has been devoted to comprehensive surveys encompassing multiple objects concurrently. This article addresses this gap by comprehensively analyzing techniques employed in traffic, pandemics, disease forecasting, climate and weather prediction, agricultural yield estimation, and environmental data prediction. Furthermore, it elucidates challenges inherent in spatio-temporal forecasting and outlines potential avenues for future research exploration.

2025

Characterising Class Imbalance in Transportation Mode Detection: An Experimental Study

Authors
Muhammad, AR; Aguiar, A; Mendes-Moreira, J;

Publication
INTELLIGENT DATA ENGINEERING AND AUTOMATED LEARNING - IDEAL 2024, PT II

Abstract
This study investigates the impact of class imbalance and its potential interplay with other factors on machine learning models for transportation mode classification, utilising two real-world GPS trajectory datasets. A Random Forest model serves as the baseline, demonstrating strong performance on the relatively balanced dataset but experiencing significant degradation on the imbalanced one. To mitigate this effect, we explore various state-of-the-art class imbalance learning techniques, finding only marginal improvements. Resampling the fairly balanced dataset to replicate the imbalanced distribution suggests that factors beyond class imbalance are at play. We hypothesise and provide preliminary evidence for class overlap as a potential contributing factor, underscoring the need for further investigation into the broader range of classification difficulty factors. Our findings highlight the importance of balanced class distributions and a deeper understanding of factors such as class overlap in developing robust and generalisable models for transportation mode detection.

Supervised
thesis

2024

Link Prediction in Financial Networks Crises

Author
Pedro Alexandre Teixeira Moreira

Institution
UP-FEUP

2024

Online multi stream prediction for CNC machining

Author
Mohammad Pasandidehpoor

Institution
UP-FEUP

2024

A Framework to Interpret Multiple Related Rule-based Models

Author
Pedro Rodrigo Caetano Strecht Ribeiro

Institution
UP-FEUP

2024

Estimating traffic flow from samples of traffic GPS data

Author
Rahul Kumar

Institution
UP-FEUP

2024

Enhancing Forecasting using Read & Write Recurrent Neural Networks

Author
Yassine Baghoussi

Institution
UP-FEUP

OSZAR »